منابع مشابه
On Sectional Curvatures of (ε)-Sasakian Manifolds
The index of a metric plays significant roles in differential geometry as it generates variety of vector fields such as space-like, time-like, and light-like fileds. With the help of these vector fields, we establish interesting properties on ( )-Sasakian manifolds, which was introduced by Bejancu and Duggal [1] and further investigated by Xufeng and Xiaoli [2]. Since Sasakian manifolds with in...
متن کاملThe Weyl bundle as a differentiable manifold
Construction of an infinite dimensional differentiable manifold R∞ not modelled on any Banach space is proposed. Definition, metric and differential structures of a Weyl algebra (P ∗ p M [[~]], ◦) and a Weyl algebra bundle (P∗M[[~]], ◦) are presented. Continuity of the ◦-product in the Tichonov topology is proved. Construction of the ∗-product of the Fedosov type in terms of theory of connectio...
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملOn a class of paracontact Riemannian manifold
We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.
متن کاملThe curvatures of lightlike hypersurfaces of an indefinite Kenmotsu manifold
We study the forms of curvatures of lightlike hypersurfaces M of an indefinite Kenmotsu manifold M̄ subject to the conditions: (1) M is locally symmetric, i.e., the curvature tensor R of M be parallel on TM , or (2) M is a semi-symmetric manifold, i.e., R(X, Y )R = 0 on TM . M.S.C. 2010: 53C25, 53C40, 53C50.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 2006
ISSN: 0386-2194
DOI: 10.3792/pjaa.82.123